Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(11): 4968-4978, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452105

RESUMEN

Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.


Asunto(s)
Mercurio , Mercurio/análisis , Bosque Lluvioso , Monitoreo del Ambiente/métodos , Bosques , Agua
2.
Environ Sci Technol ; 57(45): 17490-17500, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37908057

RESUMEN

The karst forest is one of the extremely sensitive and fragile ecosystems in southwest China, where the biogeochemical cycling of mercury (Hg) is largely unknown. In this study, we investigated the litterfall deposition, accumulation, and soil migration of Hg in an evergreen-deciduous broadleaf karst forest using high-resolution sampling and stable isotope techniques. Results show that elevated litterfall Hg concentrations and fluxes in spring are due to the longer lifespan of evergreen tree foliage exposed to atmospheric Hg0. The hillslope has 1-2 times higher litterfall Hg concentration compared to the low-lying land due to the elevated atmospheric Hg levels induced by topographical and physiological factors. The Hg isotopic model suggests that litterfall Hg depositions account for ∼80% of the Hg source contribution in surface soil. The spatial trend of litterfall Hg deposition cannot solely explain the trend of Hg accumulation in the surface soil. Indeed, soil erosion enhances Hg accumulation in soil of low-lying land, with soil Hg concentration up to 5-times greater than the concentration on the hillslope. The high level of soil Hg migration in the karst forest poses significant ecological risks to groundwater and downstream aquatic ecosystems.


Asunto(s)
Mercurio , Contaminantes del Suelo , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Bosques , Suelo
3.
Environ Sci Technol ; 57(14): 5903-5912, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36976750

RESUMEN

Long-range transport and atmospheric deposition of gaseous mercury (Hg0) result in significant accumulation of Hg in the Qinghai-Tibetan Plateau (QTP). However, there are significant knowledge gaps in understanding the spatial distribution and source contribution of Hg in the surface soil of the QTP and factors influencing Hg accumulation. In this study, we comprehensively investigated Hg concentrations and isotopic signatures in the QTP to address these knowledge gaps. Results show that the average Hg concentration in the surface soil ranks as follows: forest (53.9 ± 36.9 ng g-1) > meadow (30.7 ± 14.3 ng g-1) > steppe (24.5 ± 16.1 ng g-1) > shrub (21.0 ± 11.6 ng g-1). Hg isotopic mass mixing and structural equation models demonstrate that vegetation-mediated atmospheric Hg0 deposition dominates the Hg source in the surface soil, with an average contribution of 62 ± 12% in forests, followed by 51 ± 10% in shrub, 50 ± 13% in steppe, and 45 ± 11% in meadow. Additionally, geogenic sources contribute 28-37% of surface soil Hg accumulation, and atmospheric Hg2+ inputs contribute 10-18% among the four types of biomes. The Hg pool in 0-10 cm surface soil over the QTP is estimated as 8200 ± 3292 Mg. Global warming, permafrost degradation, and anthropogenic influences have likely perturbed Hg accumulation in the soil of QTP.


Asunto(s)
Mercurio , Contaminantes del Suelo , Isótopos de Mercurio/análisis , Mercurio/análisis , Suelo/química , Tibet , Monitoreo del Ambiente
4.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1699-1708, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34042364

RESUMEN

In this study, seven sampling sites (glaciers retreated for 0, 10, 30, 40, 50, 80 and 127 years) were chosen along a primary succession sequence in the Hailuogou glacial retreat area in the eastern margin of the Tibetan Plateau, China. The accumulation and cycling characteristics of N and P under different succession stages were analyzed by measuring biomass and N and P contents in surface soil and each vegetation layer. The N and P contents in leaves, branches and roots of tree layers decreased along the succession sequence, whereas the N and P contents in stems were higher in the late succession stage. The changes of N and P contents in litter and soil O layer were consis-tent with those in the leaves and branches of tree layers. Ecosystem N and P storage increased along the succession sequence. Ecosystem N accumulation was mainly dependent on the vegetation layer in the early succession stage. After the community reached the climax, soil became the main N pool of the ecosystem. Vegetation P storage was higher than that in the surface soil after 80 years of glacial retreat. The nutrient accumulation rate in each layer of the ecosystem was rapid in the middle succession stage, with an order of surface soil > tree layer > understory vegetation layer. The nutrient cycling coefficients of N and P in broadleaved forest in the middle stage were higher than those in coniferous forest in the late stage, whereas the N and P utilization efficiency was lower than that in coniferous forest. Therefore, the mechanism of low nutrient cycling and high utilization efficiency of coniferous trees was conducive to the their competition with other species, thus finally forming the climax community.


Asunto(s)
Cubierta de Hielo , Nitrógeno , China , Ecosistema , Nitrógeno/análisis , Fósforo , Suelo , Tibet , Árboles
5.
Ying Yong Sheng Tai Xue Bao ; 32(3): 810-818, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33754545

RESUMEN

To investigate the plant community characteristics of alpine cutting blanks under different restoration approaches, we conducted a field survey on cutting blanks experienced either natural restoration (40 years) or artificial restoration (30, 40 and 50 years) in western Sichuan, with natural forests as the reference. Our results showed that after 40 years natural succession, cutting blank was replaced by the secondary shrub of Spiraea alpina, while artificial restoration plantation was dominated by Picea likiangensis var. rubescens. The similarity indices between these communities and natural forests were low (0.19) and medium (0.28-0.49), respectively. Cutting blank through natural and artificial restoration had lower species diversity in the shrub layer but higher diversity in the herb layer than that of natural forests. With the increases of recovery time, total cross-sectional area at breast height, wood volume, index of species diameter class distribution, diversity indices, and similarity indices between plantations and natural forests gradually increased, while stand density gradually decreased. Compared with natural forests, plantations were facing with problems including high stand density, unreasonable structure, pure stands of cohorts and poor regeneration.


Asunto(s)
Bosques , Picea , Biodiversidad , China , Ecosistema
6.
PLoS One ; 16(2): e0246433, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33529264

RESUMEN

As the two limiting nutrients for plants in most terrestrial ecosystems, nitrogen (N) and phosphorus (P) are essential for the development of succession forests. Vegetation N:P stoichiometry is a useful tool for detecting nutrient limitation. In the present work, chronosequence analysis was employed to research N and P accumulation dynamics and their stoichiometry during forest primary succession in a glacier retreat area on the Tibetan Plateau. Our results showed that: (1) total ecosystem N and P pools increased from 97 kg hm-2 to 7186 kg hm-2 and 25 kg hm-2 to 487 kg hm-2, respectively, with increasing glacier retreat year; (2) the proportion of the organic soil N pool to total ecosystem N sharply increased with increasing glacier retreat year, but the proportion of the organic soil and the vegetation P pools to the total ecosystem P was equivalent after 125 y of recession; (3) the N:P ratio for tree leaves ranged from 10.1 to 14.3, whereas the N:P ratio for total vegetation decreased form 13.3 to 8.4 and remained constant after 35 y of recession, and the N:P ratio for organic soil increased from 0.2 to 23.1 with increasing glacier retreat. These results suggested that organic soil N increased with increasing years of glacier retreat, which may be the main sink for atmospheric N, whereas increased P accumulation in vegetation after 125 y of recession suggested that much of the soil P was transformed into the biomass P pool. As the N:P ratio for vegetation maintained a low level for 35-125 y of recession, we suggested that N might be the main limiting element for plant growth in the development of this ecosystem.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Nitrógeno/análisis , Fósforo/análisis , Suelo/química , Árboles/química , Biomasa , Ecosistema , Bosques , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...